A Linear Search Strategy using Bounds
نویسندگان
چکیده
Branch-and-bound and branch-and-cut use search trees to identify optimal solutions. In this paper, we introduce a linear search strategy which we refer to as cut-and-solve and prove optimality and completeness for this method. At each node in the search path, a relaxed problem and a sparse problem are solved and a constraint is added to the relaxed problem. The sparse problems provide incumbent solutions. When the constraining of the relaxed problem becomes tight enough, its solution value becomes no better than the incumbent solution value. At this point, the incumbent solution is declared to be optimal. This strategy is easily adapted to be an anytime algorithm as an incumbent solution is found at the root node and continuously updated during the search. Cut-and-solve enjoys two favorable properties. Its memory requirements are nominal and, since there is no branching, there are no “wrong” subtrees in which the search may get lost. For these reasons, it may be potentially useful as an alternative approach for problems that are difficult to solve using search tree methods. In this paper, we demonstrate the cut-and-solve strategy by implementing it for the Asymmetric Traveling Salesman Problem (ATSP). We compare this implementation with state-of-the-art ATSP solvers to validate the potential of this novel search strategy. Our code is available at (Climer & Zhang 2004).
منابع مشابه
Non-linear stochastic inversion of 2D gravity data using evolution strategy (ES)
In the current work, a 2D non-linear inverse problem of gravity data is solved using the evolution strategies (ES) to find the thickness of a sedimentary layer in a deep-water situation where a thick sedimentary layer usually exists. Such problems are widely encountered in the early stages of petroleum explorations where potential field data are used to find an initial estimate of the basin geo...
متن کاملDrift Theory in Continuous Search Spaces: Expected Hitting Time of the (1+1)-ES with 1/5 Success Rule
This paper explores the use of the standard approach for proving runtime bounds in discrete domains—often referred to as drift analysis—in the context of optimization on a continuous domain. Using this framework we analyze the (1+1) Evolution Strategy with one-fifth success rule on the sphere function. To deal with potential functions that are not lower-bounded, we formulate novel drift theorem...
متن کاملOne-Dimensional Modeling of Helicopter-Borne Electromagnetic Data Using Marquardt-Levenberg Including Backtracking-Armijo Line Search Strategy
In the last decades, helicopter-borne electromagnetic (HEM) method became a focus of interest in the fields of mineral exploration, geological mapping, groundwater resource investigation and environmental monitoring. As a standard approach, researchers use 1-D inversion of the acquired HEM data to recover the conductivity/resistivity-depth models. Since the relation between HEM data and model ...
متن کاملAn empirical evaluation of walk-and-round heuristics for mixed integer linear programs
Feasibility pump is a general purpose technique for finding feasible solutions of mixed integer programs. In this paper we report our computational experience on using geometric random walks and a random ray approach to provide good points for the feasibility pump. Computational results on MIPLIB2003 and COR@L test libraries show that the walk-and-round approach improves the upper bounds of a l...
متن کاملIdentifying Ferdowsi University of Mashhad Graduated Students' Search Strategies during their Information-searching through the Web
Purpose: the aim was to identify users' search strategies and the rate of using search strategies on the web. Method: It is a practical survey. The statistical population included all the postgraduate students in the first semester at Ferdowsi University of Mashhad. 95 students were selected by stratified random sampling method. To gather the data, log files were used. Findings: 12 search strat...
متن کامل